Nerve Stimulation Stops the Ring of Tinnitus in Rats

NIH-funded researchers were able to eliminate tinnitus in a group of rats by stimulating a nerve in the neck while simultaneously playing a variety of sound tones over an extended period of time, says a study published today in the advance online publication of the journal Nature [1]. The hallmark of tinnitus is often a persistent ringing in the ears that is annoying for some, debilitating for others, and currently incurable. Similar to pressing a reset button in the brain, this new therapy was found to help retrain the part of the brain that interprets sound so that errant neurons reverted back to their original state and the ringing disappeared. The research was conducted by scientists from the University of Texas at Dallas and MicroTransponder Inc., in Dallas.

Traditional ‘Heel Stick’ Test Is Not an Effective Screening Tool for CMV in Newborns

A routine screening test for several metabolic and genetic disorders in newborns, the heel-stick procedure, is not effective in screening for cytomegalovirus (CMV) infection, a leading cause of hearing loss in children, according to research published in the April 14 online issue of the Journal of the American Medical Association.

About 20,000-30,000 infants are born infected with CMV each year, 10-15 percent of whom are at risk for eventually developing hearing loss.

The study, funded by the National Institute on Deafness and Other Communication Disorders (NIDCD), one of the National Institutes of Health, is part of a multicenter research project headed by the University of Alabama at Birmingham that is seeking to find the most effective screening test for CMV infection in newborns. The standard method for detecting CMV infection in newborns is labor-intensive and not conducive to a widespread screening program.

Gene Linked to a Rare Form of Progressive Hearing Loss in Males is Identified

A gene associated with a rare form of progressive deafness in males has been identified by an international team of researchers funded by the National Institute on Deafness and Other Communication Disorders. The gene, PRPS1, appears to be crucial in inner ear development and maintenance. The findings are published in the December 17 early online issue of the American Journal of Human Genetics [1].

Boy hearing